| | | | | | | | Inicio Inicio Presentación Presentación Aviso legal Aviso legal Mapa del sitio Mapa del sitio Prensa Prensa FAQs FAQs Contactar Contactar
Última actualización: agosto de 2016
www.asifunciona.com
ASÍ FUNCIONA
© 2004 - 2016
Resolución: 960 x 600 pixeles
¡Bienvenidos!
ASÍ FUNCIONA ¡DESCUBRA CÓMO FUNCIONAN LAS COSAS! CIENCIA Y TECNOLOGÍA AL ALCANCE DE TODOS...
Inicio Inicio Así funciona Así funciona Así funciona
¿Qué es?
¿Por qué? ¿Por qué? ¿Quién? ¿Quién? Tablas Tablas Minibiografías Minibiografías Práctico Práctico Respuestas Respuestas
Subir
Atrás
Inicio
Siguiente
Así funciona Así funciona Así funciona
Búsqueda personalizada
QUÉ ES LA NOTACIÓN CIENTÍFICA  2
Texto: José Antonio E. García Álvarez
Contenido:  Introducción > Representación de números enteros y decimales en notación    científica Operaciones matemáticas básicas en notación científica Notación de ingeniería REPRESENTACIÓN DE NÚMEROS ENTEROS Y DECIMALES EN NOTACIÓN CIENTÍFICA Método para representar un número entero en notación científica Cualquier    número    entero    o    decimal,    independientemente    de    la cantidad    de    cifras    que    posea,    se    puede    reducir    empleando    la notación científica. Veamos en la práctica algunos ejemplos: Como   se   podrá   observar   en   esta   tabla,   la   notación   científica   se compone   siempre   de   un   solo   número   entero   y   el   resto   pueden   ser decimales,    de    acuerdo    con    la    mayor    o    menor    exactitud    que requiera   una   representación   numérica   determinada.   La   cantidad de   decimales   se   puede   recortar   y   dejar   en   uno   o   dos   números solamente   aplicando   la   aproximación   o   redondeo   de      cifras,   pues el    objetivo    de    emplear    la    notación    científica    es,    precisamente, acortar las cifras largas, ya sean de números enteros o decimales. Para   convertir   en   notación   científica   el   número   529745386   (ver   “a” en   la   tabla   anterior),   será   necesario   contar   de   derecha   a   izquierda los   espacios   que   existen   a   partir   del   último   espacio   formado   entre el   número   6   y   el   8   al   final   de   la   serie   numérica,   hasta   llegar   al primer   espacio   existente   entre   el   2   y   el   5,   al   principio   de   la   serie numérica. Al   terminar   de   contar,   veremos   que   la   cuenta   nos   arroja ocho   espacios,   por   lo   que   la   notación   científica   de   ese   número entero   la   podemos   escribir   de   la   siguiente   forma:   5,29   x   10 8 .   (El superíndice   8      representa   los   espacios   que   hemos   contado   desde el “6” hasta el “5”). Si   queremos   redondear   mucho   más   esa   cifra   para   que   la   notación sea   aún   más   simplificada,   podemos   escribirla   como   5,3   x   10 8    .   De igual     forma     se     pueden     representar     más     cifras     decimales empleando    los    propios    números    que    forman    el    número    entero como, por ejemplo, 5,2975 x 10 8  . Para   convertir   de   nuevo   la   cifra   representada   en   notación   científica en   el   número   entero   que   le   dio   origen,   realizamos   la   operación inversa.   Por   ejemplo,   si   el   número   es   529745386   y   se   redondeó originalmente    para    que    su    representación    decimal    en    notación científica   fuera   5,3   x   10 8    a   la   hora   de   restaurar   el   número   original, en   este   caso   será   necesario   multiplicar      5,3   x   100000000   (los   ocho ceros   se   corresponden   con   el   número   superíndice   de   la   base   10 8 ). El    resultado    de    la    operación    será    530000000    en    lugar    de 529745386,   que   como   se   podrá   comprobar   difiere   algo   de   la   cifra original    debido    a    la    aproximación    o    redondeo    que    se    realizó anteriormente. Método   para   representar   un   número   decimal   o   fraccionario   en notación científica El   procedimiento   para   convertir   un   número   decimal   en   otro   número en    notación    científica    es    parecido    al    anterior.    Tomemos    por ejemplo   el   número   0,000987   (correspondiente   a   la   “e”   en   la   tabla más   arriba   del   ejemplo).   Para   realizar   la   conversión,   sencillamente corremos   la   coma   hacia   la   derecha   los   cuatro   espacios   que   la separan    del    “9”,    con    lo    que    obtendremos    el    siguiente    número decimal:   9,87   .   Por   tanto,   la   notación   final   se   verá   representada   de la    siguiente    forma:    9,87    x    10 -4     Si    queremos    acortar    más    ese resultado   podemos   redondear   y   escribirlo      como   9,9   x   10 -4 .   En   el caso    de    la    conversión    de    decimales    a    notación    científica,    el superíndice   de   la   base   “10”   llevará   el   signo   menos   (–)   para   indicar que   esta   notación   corresponde   a   un   número   fraccionario   en   lugar de uno entero. Para   convertir   de   nuevo   la   notación   científica   de   este   ejemplo   en decimal,   movemos   la   coma   tantos   lugares   a   la   izquierda   como número    nos    indique    el    superíndice    negativo    de    la    base    “10”, agregando los correspondientes ceros para completar la cifra.
© 2004 - 2016
Resolución: 480 x 800 pixeles
Inicio Inicio Presentación Presentación Aviso legal Aviso legal Mapa del sitio Mapa del sitio Prensa Prensa FAQs FAQs Contactar Contactar
Última actualización: agosto de 2016
www.asifunciona.com
Subir
ASÍ FUNCIONA ¡DESCUBRA CÓMO FUNCIONAN LAS COSAS! CIENCIA Y TECNOLOGÍA AL ALCANCE DE TODOS...
QUÉ ES
Atrás
Inicio
Siguiente
Búsqueda personalizada
QUÉ ES LA NOTACIÓN CIENTÍFICA 2
Texto: José Antonio E. García Álvarez
Contenido:  Introducción > Representación de números enteros y decimales en notación científica Operaciones matemáticas básicas en notación científica Notación de ingeniería REPRESENTACIÓN DE NÚMEROS ENTEROS Y DECIMALES EN NOTACIÓN CIENTÍFICA Cualquier   número   entero   o   decimal,   independientemente de    la    cantidad    de    cifras    que    posea,    se    puede    reducir empleando   la   notación   científica.   Veamos   en   la   práctica algunos ejemplos: Como    se    podrá    observar    en    esta    tabla,    la    notación científica   se   compone   siempre   de   un   solo   número   entero   y el   resto   pueden   ser   decimales,   de   acuerdo   con   la   mayor   o menor   exactitud   que   requiera   una   representación   numérica determinada.   La   cantidad   de   decimales   se   puede   recortar y    dejar    en    uno    o    dos    números    solamente    aplicando    la aproximación   o   redondeo   de      cifras,   pues   el   objetivo   de emplear   la   notación   científica   es,   precisamente,   acortar   las cifras largas, ya sean de números enteros o decimales. Para   convertir   en   notación   científica   el   número   529745386 (ver    “a”    en    la    tabla    anterior),    será    necesario    contar    de derecha   a   izquierda   los   espacios   que   existen   a   partir   del último   espacio   formado   entre   el   número   6   y   el   8   al   final   de la   serie   numérica,   hasta   llegar   al   primer   espacio   existente entre    el    2    y    el    5,    al    principio    de    la    serie    numérica.   Al terminar   de   contar,   veremos   que   la   cuenta   nos   arroja   ocho espacios,   por   lo   que   la   notación   científica   de   ese   número entero   la   podemos   escribir   de   la   siguiente   forma:   5,29   x 10 8 .   (El   superíndice   8      representa   los   espacios   que   hemos contado desde el “6” hasta el “5”). Si   queremos   redondear   mucho   más   esa   cifra   para   que   la notación    sea    aún    más    simplificada,    podemos    escribirla como   5,3   x   10 8    .   De   igual   forma   se   pueden   representar más   cifras   decimales   empleando   los   propios   números   que forman el número entero como, por ejemplo, 5,2975 x 10 8  . Para   convertir   de   nuevo   la   cifra   representada   en   notación científica   en   el   número   entero   que   le   dio   origen,   realizamos la    operación    inversa.    Por    ejemplo,    si    el    número    es 529745386    y    se    redondeó    originalmente    para    que    su representación   decimal   en   notación   científica   fuera   5,3   x 10 8    a   la   hora   de   restaurar   el   número   original,   en   este   caso será    necesario    multiplicar        5,3    x    100000000    (los    ocho ceros   se   corresponden   con   el   número   superíndice   de   la base   10 8 ).   El   resultado   de   la   operación   será   530000000   en lugarde   529745386,   que   como   se   podrá   comprobar   difiere algo    de    la    cifra    original    debido    a    la    aproximación    o redondeo que se realizó anteriormente.  
Publicidad. El tema continúa más abajo
Método     para     representar     un     número     decimal     o fraccionario en notación científica El   procedimiento   para   convertir   un   número   decimal   en   otro número    en    notación    científica    es    parecido    al    anterior. Tomemos        por        ejemplo        el        número        0,000987 (correspondiente    a    la    “e”    en    la    tabla    más    arriba    del ejemplo).     Para     realizar     la     conversión,     sencillamente corremos   la   coma   hacia   la   derecha   los   cuatro   espacios que    la    separan    del    “9”,    con    lo    que    obtendremos    el siguiente   número   decimal:   9,87   .   Por   tanto,   la   notación final   se   verá   representada   de   la   siguiente   forma:   9,87   x   10 - 4     Si    queremos    acortar    más    ese    resultado    podemos redondear   y   escribirlo      como   9,9   x   10 -4 .   En   el   caso   de   la conversión     de     decimales     a     notación     científica,     el superíndice   de   la   base   “10”   llevará   el   signo   menos   (–)   para indicar    que    esta    notación    corresponde    a    un    número fraccionario en lugar de uno entero. Para    convertir    de    nuevo    la    notación    científica    de    este ejemplo   en   decimal,   movemos   la   coma   tantos   lugares   a   la izquierda     como     número     nos     indique     el     superíndice negativo   de   la   base   “10”,   agregando   los   correspondientes ceros para completar la cifra.